Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth.

نویسندگان

  • Julio A Aguirre-Ghiso
  • Liliana Ossowski
  • Sarah K Rosenbaum
چکیده

We describe a novel approach that allows detection of primary and metastatic cells in vivo in which either the extracellular signal-regulated kinase (ERK) or the p38 pathway is activated. Our recent findings showed that ERK and p38 kinases regulate, respectively, programs dictating cell proliferation (high ERK-to-p38 ratio) or growth arrest and dormancy (low ERK-to-p38 ratio) in vivo. Thus, we were able to use green fluorescent protein (GFP) to reflect ERK and p38 activities and, consequently, the proliferative state of cancer cells. This was accomplished by transfecting tumorigenic T-HEp3 and HT1080 cells, and dormant D-HEp3 cells, with plasmids coding for Elk-GAL4 or CHOP-GAL4 fusion proteins that, when phosphorylated by either ERK or p38, respectively, transactivated a GFP-reporter gene. The fate of these cells was examined in culture, in primary sites, and in spontaneous metastasis in chick embryos and nude mice. In culture GFP level was directly proportional to the previously established levels of ERK or p38 activation. In contrast, during the first 24 hours of in vivo inoculation, both the tumorigenic and the dormant cells strongly activated the p38 pathway. However, in the tumorigenic cells, p38 activity was rapidly silenced, correcting the ERK/p38 imbalance and contributing to high ERK activity throughout the entire period of tumor growth. In contrast, in the small nodules formed by dormant cells, the level of ERK activity was dramatically reduced, whereas p38 activity remained high. Strong activation of ERK was evident in metastatic sites, whereas p38 activation was silenced in this anatomic location as well. These results show that it is possible to directly measure cancer cell response to microenvironment with this reporter system and that only proliferation-competent cells have the ability to rapidly adapt ERK and p38 signaling for proliferative success. This approach allows isolation and further characterization of metastatic cells with specific signaling signatures indicative of their phenotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.

Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...

متن کامل

Differential activation of c-Jun NH2-terminal kinase and p38 pathways during FTY720-induced apoptosis of T lymphocytes that is suppressed by the extracellular signal-regulated kinase pathway.

FTY720 is a novel immunosuppressive drug derived from a metabolite from Isaria sinclairii that is known to induce apoptosis of rat splenic T cells. In this study, we examined the intracellular signaling pathway triggered by FTY720. Treatment of human Jurkat T lymphocytes with FTY720-induced apoptosis characterized by DNA fragmentation. The same treatment induced activation of protein kinases su...

متن کامل

Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.

Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 64 20  شماره 

صفحات  -

تاریخ انتشار 2004